Low depth algorithms for quantum amplitude estimation
نویسندگان
چکیده
We design and analyze two new low depth algorithms for amplitude estimation (AE) achieving an optimal tradeoff between the quantum speedup circuit depth. For β∈(0,1], our require xmlns:mml="http://www.w3.org/1998/Math/MathML">N=O~(1ϵ1+β) oracle calls to be called sequentially xmlns:mml="http://www.w3.org/1998/Math/MathML">D=O1−βϵ. These interpolate classical algorithm xmlns:mml="http://www.w3.org/1998/Math/MathML">(β=1β=0) achieve a xmlns:mml="http://www.w3.org/1998/Math/MathML">ND=O(1/ϵ2). bring speedups Monte Carlo methods closer realization, as they can provide with shallower circuits.The first (Power law AE) uses power schedules in framework introduced by Suzuki et al \cite{S20}. The works stretchy="false">] has provable correctness guarantees when log-likelihood function satisfies regularity conditions required Bernstein Von-Mises theorem. second (QoPrime Chinese remainder theorem combining lower estimates higher accuracy. discrete xmlns:mml="http://www.w3.org/1998/Math/MathML">β=q/k where xmlns:mml="http://www.w3.org/1998/Math/MathML">k≥2 is number of distinct coprime moduli used xmlns:mml="http://www.w3.org/1998/Math/MathML">1≤q≤k−1, fully rigorous proof. both presence depolarizing noise numerical comparisons state art algorithms.
منابع مشابه
Quantum Amplitude Amplification and Estimation
Consider a Boolean function χ : X → {0, 1} that partitions set X between its good and bad elements, where x is good if χ(x) = 1 and bad otherwise. Consider also a quantum algorithm A such that A|0〉 = ∑ x∈X αx|x〉 is a quantum superposition of the elements of X, and let a denote the probability that a good element is produced if A|0〉 is measured. If we repeat the process of running A, measuring t...
متن کاملEnhancement of depth estimation techniques with amplitude analysis
Depth estimation has been used widely as a tool for rapid interpretion of large-scale potential-field data in applications such as mapping basement relief. Nearly all of these techniques rely on the analysis of the local shape of the anomalous field in determining the depth and location of the subsurface sources. These methods focus on the phase information at the expense of the amplitude of th...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Depth and amplitude for unbounded complexes Hans
We prove that over a commutative noetherian ring the three approaches to introducing depth for complexes: via Koszul homology, via Ext modules, and via local cohomology, all yield the same invariant. Using this result, we establish a far reaching generalization of the classical AuslanderBuchsbaum formula for the depth of finitely generated modules of finite projective dimension. We extend also ...
متن کاملTwo-sided Quantum Amplitude Amplification and Exact-Error Algorithms
Amplitude amplification is a central tool used in Grover’s quantum search algorithm and has been used in various forms in numerous quantum algorithms since then. It has been shown to completely eliminate one-sided error of quantum search algorithms where input is accessed in the form of black-box queries. We generalize amplitude amplification for two-sided error quantum algorithm for decision p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum
سال: 2022
ISSN: ['2521-327X']
DOI: https://doi.org/10.22331/q-2022-06-27-745